
April 2006 www.stsc.hill.af.mil 27

At NASA Goddard Space Flight Center,
we analyzed several safety-critical soft-

ware systems with sizes ranging from
approximately 50,000 to more than 500,000
lines of code (LOC). These systems’ archi-
tecture included a reusable software core
linked to mission-specific software that
resulted in complete, unique ground support
systems for spacecraft control. Each space-
craft required both new, mission-specific
source code and an interface to the reusable
core. Because of technology changes, the
reusable core itself evolved, increasing in
size more than five-fold. The software sys-
tems have been somewhat superseded by
commercial off-the-shelf products.

The evolving, reusable core had a much
lower defect ratio (defects per thousand
LOC [KLOC]) for the reusable core than
similar systems in the same application
domain. The defect ratios of 0.034 and
0.075 for the latest two versions of the
reusable core discussed here are far lower
than the range of 0.12 to 1.89 for similar
systems. The extremely low defect ratio of
the core was even more impressive in view
of Les Hatton’s statement that very few
systems, even safety-critical ones, have ever
stayed below one defect per KLOC [1].

The Model
What caused the unusually high quality of
the evolving, reusable software core? Did
the reused part of the core have a low
defect ratio simply because it had been
operational for so long in a safety-critical
domain? If so, we should expect defects
per KLOC to follow an exponential distri-
bution of the form a constant times e-K*T.

On the other hand, was the new code
good because it underwent stringent
analysis and testing? If so, we should
expect a linear relationship, reflecting the
increase in code size.

These two questions led to a simple
model for the number of defects in each
release as the sum of an exponential dis-
tribution representing defects caused by
reused code and a linear expression repre-
senting the defects in the new source
code. The model is:

DEFECTS = (REUSED * e-K*T + NEW) * M * 
KLOC

where,

T is the time between releases. REUSED
and NEW are the percentage of reused
and new lines of code in a release,
respectively. 

KLOC is the size of the release. 

The constants K and M are discussed later.

Calibration of the Model
Calibration of the model requires calcula-
tion of the constants REUSED, NEW, K,
and M. We already know KLOC and want
to estimate DEFECTS. The overall reuse
percentages between releases clustered
around 80; hence, the value of NEW was
.20 and, thus, our the model became:

DEFECTS = (.80 * e-K*T + .20) * M * KLOC

To compute the constant K, we entered the
defects and the KLOC for each release into
an Excel spreadsheet, one entry per release,
and then computed the exponent K in the
exponential distribution, using the Excel
LOGEST function to compute K. This
constant was, to two decimal places, 0.79.

The constant M represents the change
scale between LOC and DEFECTS. To
compute M, we created a third column in
the Excel spreadsheet, representing the
difference between the observed number
of defects for previous releases and what
is predicted by the partial formula (.80 * e-

.79*T + .20) * KLOC, one entry per release,
and then computed M using the Excel
SLOPE function. This constant M was, to
two decimal places, 0.65, making the
model for this domain:

DEFECTS = 
(.80 * e-.79*T + .20) * 0.65 * KLOC

Analysis and Future Work
It is possible to fine-tune the model more
than what we presented here. Specific val-
ues can be used instead of the averages to
improve accuracy. Using different multi-
pliers of REUSED and NEW can
improve estimation, also.

Measures based on exponential distrib-
utions frequently are used to assess system
quality, reliability, and to stop testing when
the expected number of errors remaining
meets the objective error rate. As far as we

know, their use in conjunction with soft-
ware reuse to predict faults is new.

Note that applying reuse measure-
ments to evolving code is somewhat con-
troversial. Indeed, Jeffrey Poulin [2] and
others recommend against attempting
software reuse when the underlying code is
not stable. The author recommends it in
certain circumstances [3], while others are
neutral or do not comment on the issue.
Readers are encouraged to provide their
experiences via e-mail to the author.u

Acknowledgement
This research was partially supported by
National Science Foundation grant num-
ber EIA-0324818.

References
1. Hatton, L. “Does OO Sync With What

We Think?” IEEE Software 15.3 (May,
1998).

2. Poulin, J.S. Measuring Software Reuse:
Principles, Practices, and Economic Mod-
els. Reading, MA: Addison-Wesley, 1997.

3. Leach, R.J. Software Reuse: Methods,
Costs, and Models. New York:
McGraw-Hill, 1996.

How to Relate Quality and Reuse in Evolving Systems

This article suggests a model to predict the quality of software developed over time, where the reusable components are also
evolving over time.

Dr. Ronald J. Leach
Howard University

About the Author

Ronald J. Leach, Ph.D.,
is professor and chair of
the department of sys-
tems and computer sci-
ence at Howard Univer-
sity where he performs

research on software engineering with
special interest in reuse, metrics, and
fault tolerance. He has a Bachelor of
Science, Master of Science, and doctor-
ate degree in mathematics from the
University of Maryland, and a Master of
Science in computer science from Johns
Hopkins University.

Dept. of Systems and 
Computer Science
Howard University
Washington, DC 20059
Phone: (202) 806-6650
Fax: (202) 806-4531
E-mail: rjl@scs.howard.edu




